skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wagner, Gregory L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We examine a two-dimensional deep-water surface gravity wave packet generated by a pressure disturbance in the Lagrangian reference frame. The pressure disturbance has the form of a narrow-banded weakly nonlinear deep-water wave packet. During forcing, the vorticity equation implies that the momentum resides entirely in the near-surface Lagrangian-mean flow, which in this context is often called the “Stokes drift”. After the forcing turns off, the wave packet propagates away from the forcing region, carrying with it most of the energy imparted by the forcing. These waves together with their induced long wave response have no momentum in a depth integrated sense, in agreement with the classical results of Longuet-Higgins and Stewart (Deep Sea Research and Oceanographic Abstracts 11, 592−562) and McIntyre (Journal of Fluid Mechanics 106, 331−347). The total flow associated with the propagating packet has no net momentum. In contrast with the finite-depth scenario discussed by McIntyre (Journal of Fluid Mechanics 106, 331−347), however, momentum imparted to the fluid during forcing resides in a dipolar structure that persists in the forcing region—rather than being carried away by shallow-water waves. We conclude by examining waves propagating from deep to shallow water and show that wave packets, which initially have no momentum, may have non-zero momentum in finite-depth water through reflected and trapped long waves. This explains how deep water waves acquire momentum as they approach shore. The artificial form of the parameterized forcing from the wind facilitates the thought experiments considered in this paper, as opposed to striving to model more realistic wind forcing scenarios. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  2. Abstract Current eddy‐permitting and eddy‐resolving ocean models require dissipation to prevent a spurious accumulation of enstrophy at the grid scale. We introduce a new numerical scheme for momentum advection in large‐scale ocean models that involves upwinding through a weighted essentially non‐oscillatory (WENO) reconstruction. The new scheme provides implicit dissipation and thereby avoids the need for an additional explicit dissipation that may require calibration of unknown parameters. This approach uses the rotational, “vector invariant” formulation of the momentum advection operator that is widely employed by global general circulation models. A novel formulation of the WENO “smoothness indicators” is key for avoiding excessive numerical dissipation of kinetic energy and enstrophy at grid‐resolved scales. We test the new advection scheme against a standard approach that combines explicit dissipation with a dispersive discretization of the rotational advection operator in two scenarios: (a) two‐dimensional turbulence and (b) three‐dimensional baroclinic equilibration. In both cases, the solutions are stable, free from dispersive artifacts, and achieve increased “effective” resolution compared to other approaches commonly used in ocean models. 
    more » « less
  3. Moreno, Yamir (Ed.)
    Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption. 
    more » « less
  4. We study stimulated generation – the transfer of energy from balanced flows to existing internal waves – using an asymptotic model that couples barotropic quasi-geostrophic flow and near-inertial waves with $$\text{e}^{\text{i}mz}$$ vertical structure, where $$m$$ is the vertical wavenumber and $$z$$ is the vertical coordinate. A detailed description of the conservation laws of this vertical-plane-wave model illuminates the mechanism of stimulated generation associated with vertical vorticity and lateral strain. There are two sources of wave potential energy, and corresponding sinks of balanced kinetic energy: the refractive convergence of wave action density into anti-cyclones (and divergence from cyclones); and the enhancement of wave-field gradients by geostrophic straining. We quantify these energy transfers and describe the phenomenology of stimulated generation using numerical solutions of an initially uniform inertial oscillation interacting with mature freely evolving two-dimensional turbulence. In all solutions, stimulated generation co-exists with a transfer of balanced kinetic energy to large scales via vortex merging. Also, geostrophic straining accounts for most of the generation of wave potential energy, representing a sink of 10 %–20 % of the initial balanced kinetic energy. However, refraction is fundamental because it creates the initial eddy-scale lateral gradients in the near-inertial field that are then enhanced by advection. In these quasi-inviscid solutions, wave dispersion is the only mechanism that upsets stimulated generation: with a barotropic balanced flow, lateral straining enhances the wave group velocity, so that waves accelerate and rapidly escape from straining regions. This wave escape prevents wave energy from cascading to dissipative scales. 
    more » « less
  5. Abstract We describe a process called “squeeze dispersion” in which the squeezing of oceanic tracer gradients by waves, eddies, and bathymetric flow modulates diapycnal diffusion by centimeter to meter‐scale turbulence. Due to squeeze dispersion, the effective diapycnal diffusivity of oceanic tracers is different and typically greater than the average “local” diffusivity, especially when local diffusivity correlates with squeezing. We develop a theory to quantify the effects of squeeze dispersion on diapycnal oceanic transport, finding formulas that connect density‐averaged tracer flux, locally measured diffusivity, large‐scale oceanic strain, the thickness‐weighted average buoyancy gradient, and the effective diffusivity of oceanic tracers. We use this effective diffusivity to interpret observations of abyssal flow through the Samoan Passage reported by Alford et al. (2013,https://doi.org/10.1002/grl.50684) and find that squeezing modulates diapycnal tracer dispersion by factors between 0.5 and 3. 
    more » « less